(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(0, y) → 0
minus(s(x), 0) → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0) → false
perfectp(s(x)) → f(x, s(0), s(x), s(x))
f(0, y, 0, u) → true
f(0, y, s(z), u) → false
f(s(x), 0, z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
f(s(s(x116272_1)), s(y), z, s(0)) →+ if(le(s(x116272_1), y), f(s(s(x116272_1)), minus(y, s(x116272_1)), z, s(0)), if(le(x116272_1, 0), f(x116272_1, s(0), minus(z, s(x116272_1)), s(0)), f(x116272_1, s(0), z, s(0))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1].
The pumping substitution is [x116272_1 / s(s(x116272_1))].
The result substitution is [y / 0, z / minus(z, s(x116272_1))].
The rewrite sequence
f(s(s(x116272_1)), s(y), z, s(0)) →+ if(le(s(x116272_1), y), f(s(s(x116272_1)), minus(y, s(x116272_1)), z, s(0)), if(le(x116272_1, 0), f(x116272_1, s(0), minus(z, s(x116272_1)), s(0)), f(x116272_1, s(0), z, s(0))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [2,2].
The pumping substitution is [x116272_1 / s(s(x116272_1))].
The result substitution is [y / 0].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(0', y) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(0', y) → 0'
minus(s(x), 0') → s(x)
minus(s(x), s(y)) → minus(x, y)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
if(true, x, y) → x
if(false, x, y) → y
perfectp(0') → false
perfectp(s(x)) → f(x, s(0'), s(x), s(x))
f(0', y, 0', u) → true
f(0', y, s(z), u) → false
f(s(x), 0', z, u) → f(x, u, minus(z, s(x)), u)
f(s(x), s(y), z, u) → if(le(x, y), f(s(x), minus(y, x), z, u), f(x, u, z, u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
le,
fThey will be analysed ascendingly in the following order:
minus < f
le < f
(8) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus, le, f
They will be analysed ascendingly in the following order:
minus < f
le < f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
minus(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, f
They will be analysed ascendingly in the following order:
le < f
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n435_0),
gen_0':s3_0(
n435_0)) →
true, rt ∈ Ω(1 + n435
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n435_0, 1)), gen_0':s3_0(+(n435_0, 1))) →RΩ(1)
le(gen_0':s3_0(n435_0), gen_0':s3_0(n435_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n435_0), gen_0':s3_0(n435_0)) → true, rt ∈ Ω(1 + n4350)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(16) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n435_0), gen_0':s3_0(n435_0)) → true, rt ∈ Ω(1 + n4350)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
le(gen_0':s3_0(n435_0), gen_0':s3_0(n435_0)) → true, rt ∈ Ω(1 + n4350)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
minus(
0',
y) →
0'minus(
s(
x),
0') →
s(
x)
minus(
s(
x),
s(
y)) →
minus(
x,
y)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yperfectp(
0') →
falseperfectp(
s(
x)) →
f(
x,
s(
0'),
s(
x),
s(
x))
f(
0',
y,
0',
u) →
truef(
0',
y,
s(
z),
u) →
falsef(
s(
x),
0',
z,
u) →
f(
x,
u,
minus(
z,
s(
x)),
u)
f(
s(
x),
s(
y),
z,
u) →
if(
le(
x,
y),
f(
s(
x),
minus(
y,
x),
z,
u),
f(
x,
u,
z,
u))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
if :: true:false → true:false → true:false → true:false
perfectp :: 0':s → true:false
f :: 0':s → 0':s → 0':s → 0':s → true:false
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)